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Abstract: The proposed theorem in this paper is indicative of a kind of duality in the 
propagation of waves in the dual media of ENG↔MNG and DPS↔DNG in the spherical 
structures. Independent of wave frequency, the number of layers, their thickness, and the 
type of polarization, this theorem holds true in case of any change in any of these 
conditions. 
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1 Introduction1 
Metamaterials are the group of materials in which the 
real part of the permittivity and/or permeability is 
negative [1-6]. These materials are classified in three 
groups of ENG (Epsilon Negative) with negative 
permittivity, MNG (Mu Negative) with negative 
permeability and DNG (Double Negative) with negative 
permittivity and permeability. Natural materials are 
called DPS (Double Positive). The chief purpose of this 
paper is to establish a duality between two dual planar 
multilayered spherical structures with interchanges 
DPS↔DNG or ENG↔MNG. Consider a plane wave 
incident on a multilayered spherical structure. The core 
of the structure may be PEC, metamaterial or dielectric. 
If we apply the interchange DPS↔DNG or 
ENG↔MNG for the constituting materials of the 
spherical structure and the surrounding medium, the 
radar cross section of the structure will not change in 
any direction. Establishing a duality between different 
classes of these structures may be used to extend the 
practical limitations of realization of metamaterials. 
This kind of duality was shown for planar structures [3-
5]. Expanding the application scope of this duality to 
include spherical media as well is what this paper deals 
itself with. 

The structure that will be studied in this paper is a 
multilayered spherical structure, which is particularly 
important owing to the fact that it can be considered as 
one of the basic and canonical shape of practical 
objects. In general, electromagnetic waves scattering 
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from multilayered spherical structures are studied by 
analytical, approximate and numerical methods [6-8]. 
Here we use the theoretical method of addition 
theorems, where the fields are expanded in terms of the 
spherical Eigen functions in various media. In this 
method the wave in each layer is considered as the sum 
of the two forward and backward waves [6]. It should 
be noted that due to employing different materials 
(conventional materials and metamaterials) the correct 
sign of the real and imaginary parts of the wave number 
k and intrinsic impedance η should be selected [9-12]. 

The formulation used in this paper is valid for any 
frequency bandwidth, number of layers and constitutive 
materials, and for both monostatic and bistatic radars. 

At first the numerical procedure is discussed and 
then the theorem is given a mathematical proof. At last 
some typical examples are represented to validate this 
theorem. 
 
2 Numerical Procedure 

Consider a sphere of radius r1 coated by several 
concentric spherical coatings of radii ri, i = 2, 3, … as 
shown in Fig. 1. The inner sphere may be composed of 
a perfectly electric conductor or dielectric material or 
metamaterial. 

In order to calculate the electromagnetic plane 
waves scattering from this spherical structure, we use a 
method based on the radial components of electric and 
magnetic Hertzian potential vectors. The advantage of 
this method is using the Scalar wave equations instead 
of its vector state [6]. The field components in spherical 
coordinates can be expressed in: 

e 1 m 2ˆ ˆr , rΠ = Π Π = Π  (1) 
where Π1 is responsible for producing all TM modes as 
Hr = 0, and Π2 produces all TE modes as Er = 0. 
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Fig. 1 Geometry of the problem. 
 
 

Functions Π1 and Π2 satisfy the scalar wave 
equations: 

2 2
i( k ) 0 , i 1,2∇ + Π = =  (2)  

Electric and magnetic fields can be achieved by the 
equations below. Here, boundary conditions for Π1 and 
Π2 are different: 

1 2

1 2

ˆ ˆ(r r) j (r r)

ˆ ˆj (r r) (r r)

⎧⎪Ε = ∇×∇× Π − ωμ∇× Π⎪⎪⎨⎪Η = ωε∇× Π +∇×∇× Π⎪⎪⎩
 

 
(3) 

Thus HΦ, Hθ, Hr, EΦ, Eθ and Er in spherical 
coordinates can be expressed in terms of Π1 and Π2: 

2

1 2

2

1 2

2

1 2

2

1 2

2
2

r 1 12

2
2

r 2 22

1 (r ) j
r sin r

1j , (r )
r sin r

1 1(r ) j
r r sin

1 1j (r )
sin r r

(r ) k r
r

(r ) k r
r

ϕ

ϕ

θ

θ

⎧ ∂ ∂
Ε = Π + ωμ Π⎪ θ ∂ ∂ϕ ∂θ⎪
⎪ ∂ ∂
Η = − ωε Π + Π⎪

∂θ θ ∂ ∂ϕ⎪
⎪ ∂ ∂⎪Ε = Π − ωμ Π
⎪ ∂ ∂θ θ ∂ϕ
⎨

∂ ∂⎪Η = ωε Π + Π⎪ θ ∂ϕ ∂ ∂θ⎪
⎪ ∂
Ε = Π + Π⎪

∂⎪
⎪ ∂
Η = Π + Π⎪

∂⎩

 (4) 

Now, consider a plane wave incident on the 
spherical structure: 

N 1

N 1

jk z
inc

jk z
inc

N 1

ˆe x
1 ˆH e y

+

+

−

−

+

⎧Ε =
⎪
⎨ =⎪ η⎩

(5) 

The radial components of the fields are: 
N 1

N 1

jk rCos
ir inc

jk rCos
ir inc

N 1

ˆ.r e sin cos
1ˆH .r e sin sin

+

+

− θ

− θ

+

⎧Ε = Ε = θ φ
⎪
⎨Η = = θ φ⎪ η⎩

 (6) 

We assume the time dependence ejωt, which should 
be considered for the selection of right signs of ε and μ 
[9-12]. 

The boundary conditions are the continuity of 
tangential components of electric and magnetic fields, 
namely: 

i , i 1, i , i 1,

i , i 1, i , i 1,

,

,
θ + θ φ + φ

θ + θ φ + φ

Ε = Ε Ε = Ε

Η = Η Η = Η
 (7) 

The expressions of boundary conditions will be 
functions of both Π1 and Π2, as Eq. (2) shows. However, 
we prefer the boundary conditions to be functions of 
only one Hertzian potential, namely Π1 or Π2. We may 
obtain such relations by a linear combination of the 
fields. 
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Consequently, the continuity of the following 
quantities is arrived at the boundaries 

(( 1 2
1 2

(r ) (r )
, , ,

r r
∂ Π ∂ Π

εΠ μΠ
∂ ∂

)). 

We then express the incident plane wave in terms of 
the expansions of spherical functions for the radial 
Hertzian potential using the addition theorems [6]: 

n
i m (1)
(N 1)1 n N 1 n mn

n 0 m 0

(1)
mn

n
i m (2)
(N 1)2 n N 1 n mn

n 0 m 0

(2)
mn

Ĵ (k r) (cos )[A cosm

B sinm ]

Ĵ (k r) (cos )[A cosm

B sinm ]

∞

+ +
= =

∞

+ +
= =

⎧Π = Ρ θ ϕ+⎪
⎪
⎪ ϕ⎪
⎨
⎪Π = Ρ θ ϕ+
⎪
⎪

ϕ⎪⎩

∑∑

∑∑
(8) 

where the surrounding medium in free space is denoted 
by i = N+1 and: 

i 1
(N 1)1 n n N 1 n2

n 1N 1

i 1
(N 1)2 n n N 1 n2

n 1N 1 N 1

1 ˆr A J (k r) (cos ) cos
k

1 ˆr A J (k r) (cos ) sin
k

∞

+ +
=+

∞

+ +
=+ +

⎧ Π = Ρ θ ϕ⎪
⎪
⎨
⎪ Π = Ρ θ ϕ
⎪ η⎩

∑

∑
(9) 

where 
n 1

(1)
1n n

( j) (2n 1)A A .
n(n 1)

−− +
= =

+
 

The scattered field is given by the following Hertzian 
potential with superscript s instead of i in Eq. (9). 

s (2) 1
(N 1)1 n n n N 1 n2

n 1N 1

s (2) 1
(N 1)2 n n n N 1 n2

n 1N 1 N 1

1 ˆr A a (k r) (cos ) cos
k

1 ˆr A b (k r) (cos ) sin
k

∞

+ +
=+

∞

+ +
=+ +

⎧ −
Π = Η Ρ θ ϕ⎪

⎪
⎨

−⎪ Π = Η Ρ θ ϕ⎪ η⎩

∑

∑
(10)

In function Πmn, the first subscript m refers to the 
layer and the second one refers to the mode n = 1, 2. 

We now express the Hertzian potentials in the 
spherical layers by the sum of spherical Bessel and 
Hankle functions as: 

l1 n n n l n n l2
n 1l

1
n

l2 n n n l n n l2
n 1l l

1
n

1 ˆ ˆr A c J (k r) d Y (k r)
k

(cos ) cos
1 ˆ ˆr A c ' J (k r) d ' Y (k r)
k

(cos ) sin

∞

=

∞

=

⎧ ⎡ ⎤Π = + ×⎪ ⎣ ⎦
⎪
⎪ Ρ θ ϕ⎪
⎨
⎪ ⎡ ⎤Π = + ×⎣ ⎦⎪ η
⎪

Ρ θ ϕ⎪⎩

∑

∑
 (11)

Inside the inner sphere, the function ˆ ( )n lY k r  is 
omitted, because it is singular at r = 0. 

We then consider the case of a PEC sphere. The 
tangential electric field on the surface of sphere should 
be zero: 

11
1

1 1
12

1

(r ) 0
r rr

0
r r r r

0
r r

θ ϕ

⎧ ∂
Π =⎪ =∂⎪Ε = Ε = ⇒ ⎨= = ⎪Π =⎪ =⎩

 (12) 

Specifically, for Eq. (11) we have: 
' '

n n 1 1 n n 1 1

' '
n n 1 1 n n 1 1

ˆ ˆc J (k r ) d Y (k r ) 0
ˆ ˆc J (k r ) d Y (k r ) 0

⎧ + =⎪
⎨

+ =⎪⎩
 

 
(13) 

We use the following identity: 

n n 1 n
nˆ ˆ ˆJ (kr) kJ (kr) J (kr)

r r−

∂
= −

∂
 

 
(14) 

in Eq. (13) to obtain: 

n 1 n 1 1 1 n 1 1

n 1 n 1 1 1 n 1 1

' '
n n 1 1 n n 1 1

ˆ ˆc k r J (k r ) nJ (k r )

ˆ ˆd k r Y (k r ) nY (k r ) 0

ˆ ˆc J (k r ) d Y (k r ) 0

−

−

⎧ ⎡ ⎤−⎣ ⎦⎪
⎪ ⎡ ⎤+ − =⎨ ⎣ ⎦
⎪

+ =⎪⎩

 (15) 

The continuity of tangential fields at the boundary 
between layers l and l + 1 are: 

[ ]l1 (l 1)1
l 1 l 1

l l1 l 1 (l 1)1
l 1 l 1

r r
r r r rr r

r r r r

+
+ +

+ +
+ +

⎧ ∂ ∂ ⎡ ⎤Π = Π⎪ ⎣ ⎦= =∂ ∂⎪
⎨
⎪ε Π = ε Π⎪ = =⎩

 (16) 

Combining Eq. (11) and the first relation in Eq. (16), 
we have: 

1 ' '
l 1 n n l 1 l n n l 1 l

1
l n n l l n n l l

ˆ ˆk e J (k r ) f Y (k r )

ˆ ˆk c J ' (k r ) d Y ' (k r )

−
+ + +

−

⎡ ⎤+⎣ ⎦
⎡ ⎤= +⎣ ⎦

 

 
(17) 

For the second relation in Eq. (16), we have: 

n n l l n n l l
l

n n l 1 l n n l 1 l
l 1

1 ˆ ˆc J (k r ) d Y (k r )

1 ˆ ˆe J (k r ) f Y (k r ) 0+ +
+

⎡ ⎤′ ′+⎣ ⎦μ

⎡ ⎤− + =⎣ ⎦μ

 (18) 

Finally, for the boundary between the outer coating 
and the free space, we have: 

( )

[ ]

( )

i s
( N 1)1 ( N 1)1

N 1

N1
N 1

i s
N 1 ( N 1)1 ( N 1)1

N 1

N N1
N 1

r
r rr

r
r rr

r r

r r

+ +
+

+

+ + +
+

+

⎧ ∂ ⎡ ⎤Π + Π =⎪ ⎣ ⎦ =∂⎪
⎪ ∂⎪ Π

=∂⎪⎪
⎨
⎪ε Π + Π =⎪ =
⎪
⎪

ε Π⎪ =⎪⎩

(19) 

Using Eqs. (9), (10) and (11), we have: 
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' (2)
n N 1 N 1 n n N 1 N 1

N 1

' '
n n N N 1 n n N N 1

N

(2)
n N 1 N 1 n n N 1 N 1

N 1

n n N N 1 n n N N 1
N

1 ˆ ˆJ (k r ) a H '(k r )
k

1 ˆ ˆp J (k r ) q Y (k r )
k

1 ˆ ˆJ (k r ) a H (k r )

1 ˆ ˆp J (k r ) q Y (k r )

+ + + +
+

+ +

+ + + +
+

+ +

⎧ ⎡ ⎤−⎪ ⎣ ⎦
⎪
⎪ ⎡ ⎤= +⎪ ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤−⎣ ⎦⎪μ
⎪
⎪ ⎡ ⎤= +⎣ ⎦⎪ μ⎩

 (20) 

Consequently, we collect the boundary conditions 
for electric Hertzian potentials in a matrix equation as 

[A][X]=[B] in Eq. (21), where l
l

l 1

k
m

k +

= . 

In an exactly similar way a matrix equation may be 
derived for the magnetic Hertzian potential boundary 
conditions. In the first line, the derivatives are replaced 
by the functions, μ is replaced by ηε and 

l l l
l

l 1 l 1 l 1

k
m

k + + +

η μ
= =

η μ
. 

Also, in the case of dielectric or metamaterial core, 
the two derived matrix equations will change slightly as 
we will have 2 more unknowns and by applying the 
boundary conditions on the surface of the core 
(matching the tangential components of the fields) we 
will have 2 more equations too. 

With the large argument relations for the spherical 
Hankle functions and according to Eq. (10), we have: 

N 1

N 1

jk r
s n 1 1
(N 1)1 n n n2

n 1N 1

jk r
s n 1 1
(N 1)2 n n n2

n 1N 1 N 1

er j A a (cos ) cos
k

er j A b (cos ) sin
k

+

+

− ∞
−

+
=+

− ∞
−

+
=+ +

⎧
Π = Ρ θ ϕ⎪

⎪
⎨
⎪ Π = Ρ θ ϕ⎪ η⎩

∑

∑
(22) 

and 

( )s s
(N 1)i N 1 (N 1)ir jk , i 1, 2

r + + +

∂
Π = − Π =

∂
(23) 

The field components are 

( )

( )

N 1

N 1

jK r
s

jK r
s

ef ,
r

ef ,
r

+

+

−

θ θ

−

ϕ ϕ

⎧
Ε = θ ϕ⎪⎪
⎨
⎪Ε = θ ϕ⎪⎩

(24) 

where 

2
2

N 1

1
1 n

n n n
n 1

1
1

N 1

1
1n

n n n
n 1

jcos S ( )
f , S ( )

k

P (cos )2n 1 da P (cos ) b
n(n 1) d sin

jsin S ( )
f , S ( )

k

P (cos )2n 1 da b P (cos )
n(n 1) sin d

θ
+

∞

=

ϕ
+

∞

=

ϕ θ⎧
= − θ =⎪

⎪
⎪ ⎡ ⎤θ+⎪ θ +⎢ ⎥+ θ θ⎪ ⎣ ⎦
⎨ ϕ θ⎪ = θ =
⎪
⎪

⎡ ⎤⎪ θ+
+ θ⎢ ⎥⎪ + θ θ⎣ ⎦⎩

∑

∑

(25) 

in which 
 
 

' '
n 1 1 n 1 1

' ' ' '
n 1 2 n 1 2 1 n 2 2 1 n 2 2

n 2 2n 1 2 n 1 2 n 2 2
1 1 2 2

' ' ' '
n l l 1 n l l 1 l n l 1 l 1 l n l 1 l 1

ˆ ˆJ (k r ) Y (k r ) 0 0 0 0 0
ˆ ˆ ˆ ˆJ (k r ) Y (k r ) m J (k r ) m Y (k r ) 0 0 0

11 1 1 ˆˆ ˆ ˆ Y (k r )J (k r ) Y (k r ) J (k r ) 0 0 0

ˆ ˆ ˆ ˆ0 0 J (k r ) Y (k r ) m J (k r ) m Y (k r ) 0+ + + + + +

− −

−−
μμ μ μ

− −

"

"

"
# # #

# # # #

" "

n l l 1 n l l 1 n l 1 l 1 n l 1 l 1
l l l 1 l 1

' ' (2) '
n N N 1 n N N 1 N n N 1 N 1

(2)
n N N 1 n N N 1 n N 1 N 1

N N N 1

1 1 1 1ˆ ˆ ˆ ˆJ (k r ) Y (k r ) J (k r ) Y (k r )0 0 0

ˆ ˆ ˆ0 0 0 0 J (k r ) Y (k r ) m H (k r )
1 1 1ˆ ˆ ˆ0 0 0 0 J (k r ) Y (k r ) H (k r )

+ + + + + +
+ +

+ + + +

+ + + +
+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

− −⎢ μ μ μ μ⎢
⎢
⎢
⎢
⎢
⎢

μ μ μ⎢⎣

""
# # #

# # # #

"

"

n

n

n

n

n '
N n N 1 N 1

n

n N 1 N 1n
N 1

0
c

0
d

0
e

0
f

0
p ˆm J (k r )
q

1 Ĵ (k r )a

+ +

+ +
+

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥× =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ μ⎣ ⎦

#
#

     (21)
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1
n

n

1
n n

P (cos )
(cos ) ,

sin
d(cos ) P (cos )
d

θ
Λ θ =

θ

Ω θ = θ
θ

 (26) 

Finally, considering Eq. (24) we can express the 
total scattered field as: 

22
2 2 2s s s

2

f f

r
θ ϕ

θ ϕ

+
Ε = Ε + Ε =  (27) 

and according to definition of Radar Cross Section 
(RCS). 

2s
2

2
inc

E
RCS ( , ) lim4 r

E
= σ θ ϕ = π  (28) 

Finally, we derive the following equation for the 
RCS. 

22RCS ( , ) 4 ( f f )θ ϕ= σ θ ϕ = π +  (29)  

 
3 Proof of the Theorem 

First, we examine the effects of the interchanges 
ENG↔MNG and DPS↔DNG on the propagation 
constants of the layers. Therefore, when the DPS 
material changes into DNG (or vice versa), we will have 
the following: 

DPS

DPS

DNG DPS

DNG DPS

j
DPS DNG :

j

j

j

∗

∗

′ ′′ε = ε − ε⎧
↔ ⎨ ′ ′′μ = μ − μ⎩

⎧ ′ ′′ε = −ε − ε = −ε⎪⇒ ⎨
′ ′′μ = −μ − μ = −μ⎪⎩

 
(30)  

The effect of these interchanges on the wave number 
and on the intrinsic impedance of the layer is thus: 

DPS DNG DPS

DPS DNG DPS

k k jk k k jk k
j j

∗

∗

⎧′ ′′ ′ ′′= − = − − = −⎧ ⎪⇒⎨ ⎨′ ′′η = η ± η ′ ′′⎩ η = η η = η⎪⎩ ∓
 (31) 

It will be observed that, the effect of this interchange 
on η and k is the same as the previous one Eq. (31): 

ENG MNG ENG

ENG MNG ENG

k k jk k k jk k
j j

∗

∗

⎧′ ′′ ′ ′′= ± − = − = −⎧ ⎪⇒⎨ ⎨′ ′′η = η + η ′ ′′⎩ η = η − η = η⎪⎩

∓
(32) 

In these relations, , , k , k , , ,′′ ′ ′′ ′ ′′ ′ ′′η η μ μ ε  and ′ε  are 
assumed to be positive. These relations show that as a 
result of the interchanges ENG↔MNG and DPS↔DNG 
k, μ, ε become equal to the negative conjugate of their 
previous case, and η becomes equal to the conjugate of 
its previous case. In addition, considering the qualities 
of the extended spherical functions of Bessel, we know 
that: 

( ) ( ) ( )

( ) ( ) ( )

n 1
n n

n
n n

ˆ ˆJ x 1 J x ,

ˆ ˆJ x 1 J x ,

+∗ ∗

∗ ∗

− = −

′ ′− = −
 

 
 
 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n
n n

n 1
n n

n 1(2) (2)
n n

n(2) (2)
n n

ˆ ˆY x 1 Y x ,

ˆ ˆY x 1 Y x ,

ˆ ˆH x 1 H x ,

ˆ ˆH x 1 H x

∗ ∗

+∗ ∗

+∗ ∗

∗ ∗

− = −

′ ′− = −

− = −

′ ′− = −

 

(33) 

Now, consider matrix equation Eq. (21). After these 
interchanges are applied, according to relations Eq. (30-
34), the new matrix equation will be thus: 

( ) ( )n n* *
new1 [A] [X] 1 [B]− = −  (34) 

By comparing the above relations, it is easily 
observable that: 

( ) ( )

n n

n n

n n

n n
n nnew old

n n

n n

n nnew old

c c
d d
e e
f f

a a

p p
q q
a a

∗

∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⇒ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

# #
  (35) 

In a similar way, it can be seen from boundary 
conditions for magnetic Hertzian Potentials: 

( ) ( )

n n

n n

n n

n n
n nnew old

n n

n n

n nnew old

c ' c '
d ' d '
e ' e '
f ' f '

b b

p ' p '
q ' q '
b b '

∗

∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⇒ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

# #
 (36) 

Now, considering the fact that the functions of 
( )n cosΛ θ  and ( )n cosΩ θ  are real, according to 

relations mentioned Eq. (25), for all 0 ≤ θ ≤ π , we will 
have the following: 

( ) ( )i inew oldS S ;i 1,2∗
θ = θ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (37) 

Therefore, taking the relations given in Eq. (25) into 
account, for fϕ  and fθ  we will have: 

( ) ( ) ( ) ( )new old new old
f f , f f

∗∗
θ θ ϕ ϕ= − = −  (38) 

Therefore: 
2 22 2

new old new old
f f , f fθ θ ϕ ϕ= =  (39) 

Finally, according to relation Eq. (29), the theorem 
is proved, due to the fact that: 

new oldRCS RCS=  (40) 
This conclusion is independent of the direction of 

the transmitter and the receiver. 
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4 Numerical Results and Discussion 
In this section several typical examples are provided 

to verify the validity of the theorem for non-dispersive 
and dispersive metamaterials. 
 

4.1  Non-Dispersive Media 
Example 1) Lossy Multilayered Spherical Structure 

and its Metamaterial Dual 
Consider a DPS sphere of radius 10 cm with 

parameters ε = 5 – j0.1, μ = 3 – j0.2 coated with a layer 
of lossy DPS materials of thickness 2 cm and 
parameters ε = 1 – j0.3, μ = 7 – j0.05 located in free 
space with parameters ε = 1, μ = 1. We calculate the 
radar cross section at θ = π, φ = π/2, in Δf = [2, 15] GHz 
ultra wide frequency band. Then we apply the 
interchange DPS↔DNG so that the parameters of the 
central sphere change to ε = –5 – j0.1, μ = –3 – j0.2 and 
the parameters of the coating to ε = –1 – j0.3,  
μ = –7 – j0.05, and the free space becomes a 
metamaterial medium with the parameters ε = 1, μ = 1. 
We calculate the radar cross section at the same 
coordinates again, and draw the corresponding curves in 
Fig. 2. It is observed that the RCSs do not change. 

We repeat the same procedure again at θ = π/4, φ = 
π/5, and calculate and draw the corresponding RCS 
curves in the two dual cases of DPS and DNG. The 
equality of the RCSs confirms the validity of the 
theorem proposed in this paper. 
 

Example 2) Conductor Sphere with ENG or MNG 
Coating 

A PEC sphere of radius 8 cm, coated with a layer of 
ENG materials of thickness 3 cm with parameters  
ε = –5, μ = 3, receives an incidence of plane wave of 
frequency f=7 GHz. We calculate the radar cross section 
for 0≤ θ ≤π in the half planes φ = π/3 and π. Now, we 
replace the ENG coating with its MNG dual, i.e. ε = +5, 
μ = -3, and the DPS free space with its metamaterial 
 
 

2 4 6 8 10 12 14
-42

-40

-38

-36

-34

-32

-30

-28

-26

-24

-22

-20

Frequency (GHz)

R
C

S 
(d

B
)

 

 

θ=π,φ=π/2,DPS media
θ=π,φ=π/2,DNG media
θ=π/4,φ=π/5,DPS media
θ=π/4,φ=π/5,DNG media

 
Fig. 2 The radar cross section of the multilayered spherical 
structure composed of DPS materials and of DNG materials 
(the dual case) at different angles versus frequency. 

dual, i.e. ε = -1, μ = -1, and calculate the RCS again and 
draw it in Fig. 3. It will be observed that the 
interchanges DPS↔DNG and ENG↔MNG do not have 
any effect on the RCS. Moreover the theorem is 
independent of the direction of the transmitter and the 
receiver. 
 

4.2  Dispersive Media 
In the examples above, the considered materials 

were non-dispersive and had great compatibility with 
the theorems proposed in this section. Although such 
examples provide us with a clear idea, the problem with 
them lies in the fact they cannot have physical 
realization. In practice, there are various dispersion 
relations for conventional materials and metamaterials, 
the most important of which are given in Table 1 [13]. 

Now, to examine the validity of the above-
mentioned theorem for dispersive materials, we 
calculate the parameters of the dispersion relations in 
the arbitrary frequency bandwidth of fΔ  in a way that 
they realize the DPS↔DNG or ENG↔MNG 
interchange. For this purpose, we divide the fΔ  
bandwidth to n mid-frequencies, and through the 
minimum squares method [14], derive parameters of 
dispersion functions (according to Table 1) in a way 
make the interchanges of Eq. (28) and (30) possible. 
Below, we have included examples for various 
dispersive materials in different structures. 
 

Example 3) Lossy Dispersive and Magnetic Material 
Sphere or Dispersive Metamaterial Sphere 

Consider a sphere of radius 6 cm composed of lossy 
magnetic materials with parameters εr = 1, μr = 1.74,  
μi = 7.06 and α = β =1. Consider another sphere, in 
another condition, composed of metamaterials with the 
dispersion relations of Drude and Lorentz and 
parameters fep = 40.16, γe = 0.001, fmp = 30.05, fmo = 0.9 
and γm = 6.65. 
 
 

 
Fig. 3 The radar cross section of the conductor sphere coated 
with ENG materials and with MNG materials (the dual case) 
at frequency f = 7 GHz in the half planes φ = π/3 and π versus 
different angles of observation θ. 
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Table 1 Dispersion relations for common material and metamaterial media. 

Type of Material Permittivity Model Permeability Model Class of Material 

DPS r i j
f fα β

ε ε
ε = −  rμ = μ  Lossy dielectric 

DPS r ε = ε  r i
b

j
f fα

μ μ
μ = −  Lossy Magnetic 

DPS r ε = ε  
2

m m m
2 2

m

( f jf f)

f f
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2
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f
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Fig. 4 The radar cross section of the sphere composed of 
dispersive DPS and DNG (the dual case) materials in 
directions (θ = 0 and π) versus frequency. 

 
It is noteworthy that these parameters are calculated, 

through the minimum squares method, in a way that 
makes the DPS DNG↔  interchange possible in the 
assumed Δf = [28, 29] GHz bandwidth. Now, we 
calculate the forward and backward radar cross sections 
(θ = 0, π) of this sphere, in Δf = [20, 40] GHz 
bandwidth, in the two dual states and draw them in Fig. 
4. It should be noted that in the first case the DPS 
sphere is located in free space, and in the second case 
the DNG sphere is located in the dual metamaterial; that 
is ε = -1, μ = -1. It will be observed that in the vicinity 
of Δf = 28.5 GHz frequency, at which the DPS↔DNG 
interchange only approximately holds, the calculated 
radar cross sections are very close to one another, and 
this confirms the proposed theorem. Now, to show that 
the theorem is independent of the direction of the 
transmitter and the receiver, we calculate the radar cross 

section, in both of the dual states, at frequency f = 28.5 
GHz in all directions ( )0 2 , 0≤ ϕ ≤ π ≤ θ ≤ π , and then 
draw their difference, i.e. DPS DNGRCS RCS− , in Fig. 
5. It will be observed that DPS DNGRCS RCS−  is very 
close to zero for all θ and φ. That is: 

DPS DNGRCS RCS≅ (41) 

This verifies the validity of the proposed theorem 
even for the situations in which dispersive conventional 
materials or metamaterials are used. 
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Fig. 5 Three dimensional graph of difference of the radar cross 
sections of the sphere composed of dispersive DSP and DNG 
materials (the dual case) at frequency f = 28.5 GHz versus the 
angles 0˚< φ < 360˚, 0˚ < θ < 180˚. 
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Example 4) Conductor Sphere with Dispersive ENG 
or MNG Coating 

A conductor sphere of radius 2 cm, coated with a 
layer of ENG materials of thickness 2 cm with Drude 
dispersion model and parameters fep = 42.9, γe = 0.001, 
μr = 1, is located in free space. It receives an incidence 
of plane wave of frequency Δf = [29, 32] GHz. We 
calculate the radar cross section in the direction θ = π 
and also θ = π/4, φ = π/2 and θ = π/2, φ = 0. Now, 
according to ENG↔MNG and DPS↔DNG 
interchanges, we assume that the MNG coating follows 
the Lorentz dispersion model and has the parameters εr 
= 1, fmp = 42.9, fmo = 0.5 and γm = 0.001, and that the 
surrounding medium is a metamaterial with parameters 
ε = -1, μ = -1. Then we calculate the RCS again and 
draw them all in Fig. 6. The results indicate the validity 
of the proposed theorems. 

The theorem proved in this paper, may be used to 
extend the practical limitations of realization of 
metamaterials. Thin wires are used for the realization of 
negative permittivity and split-ring resonators are used 
for the realization of negative permeability. This 
theorem establishes a duality between electric and 
magnetic resonators. However, a medium with negative 
constitutive parameters doesn’t exist and this limits the 
application of the theorem. 
 
5 Conclusion 

A new theorem has been proved in this paper, for 
incidence of plane waves on a multilayer spherical 
structure with PEC, metamaterial or dielectric core 
coated with metamaterials. The interchanges 
DPS↔DNG and ENG↔MNG does not change RCS in 
any direction. Then a duality is established for the radar 
cross section between two dual structures with 
substitutions DPS↔DNG and ENG↔MNG. 
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Fig. 6 The radar cross section of the conductor sphere coated 
with dispersive ENG materials and dispersive MNG materials 
(the dual case) versus frequency in different directions. 
 

References 
[1] D. Zarifi, E. Hosseininejad and A. Abdolali, 

“Design of Dual-Band Double Negative 
metamaterials”, Iranian Journal of Electrical and 
Electronic Engineering, Vol. 10, No. 2, pp.75-80, 
2014. 

[2] Z. Abolhasani and M. Tayarani, “Spurious 
Response Suppression in Waveguide Filters using 
E-Shaped Chiral Resonators”, Iranian Journal of 
Electrical and Electronic Engineering, Vol. 5, 
No. 4, pp. 230-233, 2009. 

[3] H. Oraizi, and A. Abdolali, “Several theorems for 
reflection and transmission coefficients of plane 
wave incidence on planar multilayer metamaterial 
structures”, IET Microwaves, Antennas & 
Propagation Journal, Vol. 4 , No. 11, pp. 1870-
1879 , November 2010. 

[4] M. Heidary, A. Abdolali, M. M. Salary and H. 
Mirzaei, “A duality between metamaterials and 
conventional materials in multilayered anisotropic 
planar structures”, Progress In Electromagnetics 
Research M, Vol. 32, pp. 13-25, 2013. 

[5] M. Kiani and A. Abdolali, “General Formulation 
to Investigate Scattering from Multilayer Lossy 
inhomogeneous Metamaterial Planar Structures”, 
Iranian Journal of Electrical and Electronic 
Engineering, Vol. 9, No. 1, pp. 20-26, 2013. 

[6] Ishimaru, Electromagnetic wave propagation, 
radiation, and scattering, Prentice Hall, 1991. 

[7] L. W. Li, Y. Dan and M. S. Leong, 
“Electromagnetic scattering by an 
inhomogeneous chiral sphere of varying 
permittivity: a discrete analysis using 
multilayered model”, Progress In 
Electromagnetics Research, Vol. 23, pp. 239-263, 
1999. 

[8] A. Alu and N. Engheta, “Polarizabilities and 
effective parameters for collections of spherical 
nano-particles formed by pairs of concentric 
double-negative (DNG), single-negative (SNG) 
and/or double-positive (DPS) metamaterial 
layers”, J. Appl. Phys., Vol. 97, 094310, pp. 1-12, 
2005. 

[9] N. Engheta and R. Ziolkowski, Metamaterials: 
Physics and Engineering Explorations, Wiley-
IEEE Press, 2006. 

[10] A. Sihvola, “Metamaterials in electromagnetics”, 
Metamaterials, Vol. 1, No. 1, pp. 2-11, 2007. 

[11] H. Chen, B.-I. Wu and J. A. Kong, “Review of 
electromagnetic theory in left-handed materials”, 
J. of Electromagnetic Waves and Appl., Vol. 20, 
No. 15, pp. 2137-2151, 2006. 

[12] R. W. Ziolkowski and A. D. Kipple, “Causality 
and double negative metamaterials,” Phys. Rev. 
E, Vol. 68, 026615, 2003. 

[13] H. Oraizi, A. Abdolali and N. Vaseghi, 
“Application of double zero metamaterials as 
radar absorbing materials for the reduction of 



Abdolali & Salary: A New Theorem Concerning Scattering of Electromagnetic Waves in …                                        167 

radar cross section”, Progress In 
Electromagnetics Research, Vol. 101, pp. 323-
337, 2010. 

[14] H. Oraizi, “Application of the method of least 
squares to electromagnetic engineering 
problems,” IEEE Antenna and Propagation 
Magazine, Vol. 48, No. 1, pp. 50-75, 2006. 

 
 

Ali Abdolali was born in Tehran, Iran, 
on May 3, 1974. He received B.Sc. 
degree from the University of Tehran, 
and M. Sc. degree from the University 
of Tarbiat Modares, Tehran, and the Ph. 
D. degree from the Iran University of 
Science and Technology (IUST), Tehran 
Ann Arbor, all in electrical engineering, 
in 1998, 2000, and 2010, respectively. 

In 2010, he joined the Department of Electrical Engineering, 
Iran University of Science and Technology, Tehran, Iran, 

where he is an assistant Professor of electromagnetic 
engineering. His research interests include electromagnetic 
wave scattering, Radar Cross Section (RCS) & RCSR, Radar 
Absorbing Materials (RAM), cloaking, Metamaterials, Wave 
Propagation in composite media (anisotropic, inhomogeneous, 
dispersive media), Frequency Selective Surfaces (FSS), Bio 
electromagnetism (BEM). He has authored or coauthored over 
80 papers in international journals & conferences. 
 
 

Mohammad Mahdi Salary was born 
in Qom, Iran on January 31, 1991. He 
is currently pursuing the B. Sc. degree 
in electrical engineering in Iran 
University of Science and 
Technology. His research interests 
include metamaterials, computational 
electromagnetics, electromagnetic 

wave scattering and propagation in complex media. 
 

 


